Content list available at http://epubs.icar.org.in, www.kiran.nic.in; ISSN: 0970-6429

Indian Journal of Hill Farming

June 2023, Volume 36, Issue 1, Page 105-113

Financial analysis and biological yield assessment of traditional Aquaforestry system: A case study from Lakhimpur district, Assam

Govinda Pangging* • Alex Singh Angom

Environment and Natural Resource Management Lab., Department of Forestry, NERIST (Deemed to be University), Nirjuli-791109, Arunachal Pradesh.

ARTICLE INFO

ABSTRACT

Article history:

Received: 16 September, 2022 Revision: 23 January, 2023 Accepted: 13 April, 2023

Key words: Aquaforestry, Biological yield, NPW, BCR, IRR, Payback Period

DOI: 10.56678/iahf-2023.36.01.14

Financial analysis and biological yield assessment of traditional Aquaforestry system were done in the Lakhimpur district, Assam from December 2021 to April 2022. The study was conducted through a questionnaire survey and informal interviews. The dominant occupation of Aquaforestry farmers was farming with 70.77% and the average landholding of the farmers was 1.43 ha. The average fodder and fuelwood consumption per household per day was 22.33 kg and 3.06kg, respectively. The highest biological yield was reported from marginal farmers with 2.52 quintals per annum. The Net Present Worth (NPW) was found highest in semi-medium farmers with Rs. 2,08,553 followed by small and marginal farmers with Rs. 1,69,913 and Rs. 1,31,370 respectively. The highest Benefit-Cost Ratio was found in semi-medium farmers with 2.91:1 followed by marginal farmers with 2.7:1 and small farmers 2.58:1. The highest Internal Rate of Return (IRR) was found in semi-medium farmers with 86.73%, followed by small farmers and marginal farmers. The Payback Period (PBP) was lowest in semi-medium farmers i.e., 2.21 years followed by semi-medium and small farmers.

1. Introduction

Aquaforestry is an integral part of the traditional agroforestry system in India. It is a practice that links trees with aquaculture. This is a system whereby trees or woody perennials are planted in or by water bodies such that the leaves of the trees are used as forage for fish (Nair 1991). Worldwide, Aquaforestry is practised by many ethnic communities in many other countries viz., Turkey (Ozden and Tolunay 2020), Nigeria (Ariwaoda *et al.* 2007), Southwest Nigeria (Akinwalere *et al.* 2017), etc. There are many plants parts used as potential feed for fish such as seed of *Sterculia setigera* (Adelakun *et al.* 2014), pod of *Samanea saman* (Rath *et al.* 2012), leaves of *Moringa oleifera* (Yuangsoi and Masumoto, 2012), etc.

In India, agroforestry has been traditionally practised by ethnic communities such as the agri-silviculture system, Agrisilvi-horticulture system, Agri-horticulture system, Aquaforestry, etc. by Assamese and Nyishi communities of Assam and Arunachal Pradesh, respectively (Tanjang *et al.* 2009), ethnic community of Orissa (Singh *et al.* 2011), Nyishi tribe of Arunachal Pradesh (Pangging and Singh 2015), etc. Of these, Aquaforestry is one of the important agroforestry systems which has been traditionally practised since time immemorial in various states such as Arunachal Pradesh, Assam, etc. (Pangging and Singh 2015, Dabral and Baithuri 2007).

of Hill Fa

A perusal of the literature reveals that there were few studies conducted on the economic and financial analyses of Aquaforestry in Assam till date (Dabral and Baithuri 2007). The present study not only reports the socio-economic condition of Aquaforestry but also evaluates the biological yield and financial analysis. With this perspective, the study on "*Financial analysis and biological yield assessment of traditional Aquaforestry system: A case study from Lakhimpur district, Assam*" was taken up with the following objectives such as documentation of the socio-economic conditions of the farmers adopting aquaforestry; studying the biological yield of the Aquaforestry; financial analyses of Aquaforestry through calculation of Net present worth (NPW), Cost-Benefit Ratio, Internal rate of return (IRR) and Payback Period (PBP).

^{*}Corresponding author: gpangging@gmail.com

2. Study area

The study was carried out in six selected villages viz., *No. 1 Borbali, No. 2 Borbali, Pathali Pahar, Rajbari, No. 1 Jokai Paluwa,* and *No. 1 Motia* of the Lakhimpur district in Assam, India. The headquarter of the district is North Lakhimpur and the district lies between 26°48'N to 27°53'N and 93°42' E to 94°20' E.

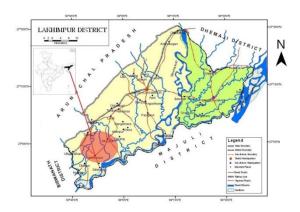


Figure 1. Map of the study site. (Source: lakhimpur.nic.in)

3. Material and Methods

The study was carried out through a questionnaire survey and informal interviews by adopting random sampling wherein 20 households were surveyed. The study was conducted from six selected villages viz., *No 1 Borbali, No 2 Borbali, Pathali Pahar, Rajbari, No 1 Jokai Paluwa, and No 1 Motia.* Of these, Rajbari Gaon had the highest population i.e., 1493 with 325 household units. The size of the aquaforestry area, location, information on the rearing of fish, and the types of trees grown were recorded during the field visits.

The socio-economic condition of farmers was recorded through a questionnaire survey and informal interviews. The farmers were categorised based on operational land holding (Anon. 2019)

Marginal farmer :	>1ha	
Small farmer	:	1-2 ha
Semi-medium farmer	:	2-4 ha
Medium farmer :	4-10 l	na and
Large farmer	:	>10 ha

The biological yield of the aquaforestry system was evaluated for each farmer category by incorporating all yield obtained from trees such as fruits, leaf fodder (LF), fuelwood (FW), construction (Const.) etc. The biological yield of horticultural and silvicultural crops were estimated by multiplying average number of trees with yield (kg) and the benefit was obtained from biological yield by multiplying the total yield (kg) with the market price (Rs. per kg). The fixed costs and operational costs were used for calculating the total costs whereas total net benefit was obtained by subtracting the total cost from the total benefit. The year of initial investment for construction of pond was different for each farmer however value of money was brought to the base year i.e., 2010. The following formula is used:

 $FV=PV\times(1+i)^n$, where:

- FV: Future value
- PV: Present value
- i: Interest rate
- n: Number of times the interest is compounded (years)

The average life period of the pond was considered 40 years and the rate of interest was 15%. In the financial analysis, Benefit: Cost ratio (B: C ratio), Net Present Worth (NPW), Internal Rate of Return (IRR) and Payback Period (PBP) were used. The discount rate of 15% was used for financial analysis wherein present cost and present benefit were calculated by multiplying the discount factor with cost and benefit, respectively. In the calculation, 2010 was considered as the base year where the total cost and benefit from 1-11 years were worked out. For the rest of 12-39 years, total cost and benefit were calculated by averaging the total cost and benefit from 1-11 years.

The Net Present Worth is the difference between the present worth of benefits and the present worth of costs. The following are formula used:

Present worth benefits =
$$\sum_{i=1}^{n} \frac{B_t}{(1+r)^t}$$
;
Present worth costs = $\sum_{i=1}^{n} \frac{C_t}{(1+r)^t}$

Where n =life period of the pond in years, B_t =Benefits for the year t, C_t =Costs for the year t, r = Rate of discount. Payback period (PBP) is the time period needed to recover an initial investment.

Payback period =
$$E + \frac{B}{C}$$
 where,

E= The year preceding immediately to recovery year

B= The amount left for recovering

C= Cash inflow in the final recovery year

Note: Cumulative cash inflows must be calculated prior to use these values

Internal Rate of Return (IRR) is the discount rate when the Net Present Value (NPV) =0.

IRR= Lower Discount rate + Difference between higher and lower discount rate x NPV of project lower Discount rate/ (Absolute difference of NPV of two discount rate).

4. Results and discussion

In the traditional aquaforestry system, farming was the dominant occupation in all farmer categories ranging from 60% to 85.71%. The nuclear family was the dominant family type, and the highest average family size was found in the small farmers with 7 members, followed by marginal and semi-medium farmers (Table 1).

Farmer category	Осси	ipation	Family structure		
Tarmer category	Farming	Business	Nuclear	Joint	Average family size
Marginal	60%	40%	80%	20%	5 <u>±</u> 1.85
Small	85.71%	14.28%	75%	25%	7 <u>±</u> 4.14
Semi-medium	66.6%	33.3%	71.42%	28.58%	6 <u>±</u> 2
Overall	70.77%	29.19%	75.50%	24.50%	6

Table 1. The occupation of aquaforestry farmers and family structure.

The highest landholding was found in semi-medium farmers with 2.61ha followed by small farmers and marginal farmers. The average landholding of farmers was 1.43ha. The male and female ratio was highest in marginal farmers with 1:0.961 and the literacy rate was comparatively low in all the categories of farmers (Table 2).

Table 2. Education status, land holding, male and female ratio, and land: man ratio.

Farmer category	Average land holding	Literacy rate	Male and female ratio	Land: man ratio
Marginal	0.34	50%	1:0.961	0.06
Small	1.36	37.5%	1:0.71	0.19
Semi-medium	2.61	50%	1:0.7	0.43

The highest fodder requirement was found in semi-medium farmers with 41.25 kg per Household (HH) per day, followed by small farmers and marginal farmers. The highest fuel wood consumption per HH per day was found in small families with 3.78 kg per HH, followed by the marginal farmer and semi-medium farmer (Table 3).

Table 3. ACU, fuelwood, and fodder requirements

Farmer category	No. of household	Total ACU	Fodder requirement per HH per day (kg)	Fuelwood Consumption per HH per day (kg)
Marginal	10	2.24	6.27	2.7
Small	7	4.87	19.48	3.78
Semi-medium	3	4.42	41.25	2.6
Average			22.33	3.06

Table 4. Size of aquaforestry

Farmer category	Size of aquaforestry $(m^2 \pm SD)$
Marginal	249 <u>±</u> 181
Small	535 <u>±</u> 440
Semi-medium	416 <u>±</u> 200

Table 5. Fixed Capital cost

Items	Fixed capital cost (Rs.)			
	Marginal	Small	Semi-medium	
Initial investment for the construction of pond at base year.	24,586	37,000	30,947	
Cost of tree plantation including pit preparation and seedlings	1,695	800	567	
Fishing gear (nylon net), Jakoi and Khaloi, etc.	2,000	2,000	2,000	
Total initial investment	28,281	39,800	33,514	

Table 6. Operational cost at present year

	Op	erational cost (Rs	.)
Items	Marginal farmer	Small farmer	Semi-medium farmer
Cost of fingerling @ Rs. 4 seed ⁻¹	2,500	3,500	4,500
Cost of Supplementary feeds; 50 kg (Marginal), 70kg (Small) and 100kg (semi-medium). @ Rs.30 kg ⁻¹	1,500	2,100	3,000
Cost of labour charge for harvesting of fish; 3 mandays (Marginal), 4 mandays (Small) and 5 mandays (semi-medium). @ Rs. 300 day ⁻¹	900	1,200	1,500
Irrigation @Rs. 0.80 plant ⁻¹ year ⁻¹ . (5 irrigations)	115	60	30
Input value of labour for harvesting and maintenance of trees; 3 mandays (Marginal), 2 mandays (Small) and 2 mandays (semi- medium) @ Rs. 200 day ⁻¹	600	400	400
Cost for leasing of land @ Rs. 225 per $100\ m^2$	570	1,200	936
Depreciation @ 2.5%	707	995	838
Miscellaneous costs	141	200	130
Total Cost (Rs.)	7,033	9,655	11,334

Table 7. Biological yield of aquaforestry in marginal farmers category.

Components	Name of the species	Fruits	No. of	Average Yield (Kg)			Goss benefit
		production	tree \pm				per HH (Rs.)
		tree ⁻¹ (kg)	SD HH ⁻¹				
				Fruits	Fodd	ler	
a) Fruit tree	Areca catechu	8	10.6 <u>+</u> 4.8	84.8	-		6,784
	Musa spp.	7	7.1±9.2	49.7	3		2,385
	Cocos nucifera	65	0.4 ± 0.7	26	-		1,040
	Mangifera indica	20	0.4 ± 0.7 0.6 ± 0.9	12	-		960
	Ziziphus spp.	30		3	-		200
	Artocarpus heterophyllus	100	0.1 ± 0.3	30	-		600
	Citrus maxima	75	0.3 <u>±</u> 0.48	7.5	-		375
	Carica papaya	15	0.1 <u>±</u> 0.3	3	-		90
			0.2 <u>±</u> 0.6	_			
Sub-total					219		12,434
				FW.	Fruit	Const.	
b) Forest tree	Bambusa tulda		11±13.9	10	-	20	300
	Archidendron		0.3 ± 0.9	-	-	-	-
	bigeminum		1 ± 1.7	3	-	-	50
	Gmelina arborea			-	_	_	-
	Ficus religiosa		0.2 <u>±</u> 0.6	-	_	_	-
	Alstonia scholaris		0.1 ± 0.3				
Sub-total					33		350
c) Fish	Cyprinus carpio Ctenopharyngodon idella		Fish (no.)				
	Labeo rohita Catla catla		312.5		187.5		30,000
	Probarbus jullieni Hypophthalmichthys molitrix						
Total		l	I	I			42,784

FW = Fuelwood, HH=Household, Const.= Construction.

Gross income from fish, horticultural and silvicultural component	= Rs. 42,784
Operational cost	= Rs. 7,033
Net income (Total Gross income - Total operational costs)	= Rs. 35,751

The average biological yield of horticultural & silvicultural crops and fishes in aquaforestry of marginal farmers category was 2.52 quintals per household and 1.87 quintals per household, respectively (Table 7).

Veer	Cost (Da)	Demoffst (Da)	Discount	Present worth	Present worth	Present worth of	
Year	Cost (Rs.)	Benefit (Rs.)	factor@15%	cost (Rs.)	benefit (Rs.)	Net Cash flow (Rs.)	
0	28,281	0	1.00	28,281	0	-28,281	
1	7,240	24,000	0.87	6,296	20,870	14,574	
2	7,240	24,000	0.76	5,474	18,147	12,673	
3	7,240	24,000	0.66	4,760	15,780	11,020	
4	7,240	24,000	0.57	4,139	13,722	9,583	
5	7,490	35,060	0.50	3,724	17,431	13,707	
6	7,490	35,060	0.43	3,238	15,157	11,919	
7	7,740	38,060	0.38	2,910	14,308	11,398	
8	7,990	45,784	0.33	2,612	14,967	12,355	
9	7,990	45,784	0.28	2,271	13,015	10,743	
10	6,400	33,904	0.25	1,582	8,381	6,799	
11	7,033	42,784	0.21	1,512	9,196	7,684	
12-39	7,372	33,858	*	*	*	*	
Total				77,152	2,08,522	1,31,370	
Net Present	Net Present Worth @ 15% 1,31,370						
BCR Ratio	BCR Ratio @ 15% 2.70						
IRR%	IRR% 65.31						
Payback Pe	riod (Years)					2.68	

 Table 8. Present worth of costs and benefits of aquaforestry in marginal farmers category.

* Series of data from 12-39 years

(b) Small farmers.

 Table 9. Biological yield of aquaforestry in small farmers category.

Components	Name of the species	Fruits produce tree ⁻¹ (kg)	No of tree HH ¹	Average Yie	ld (kg)		Gross Benefit per HH (Rs.)
				Fruits	Fe	odder	
a) Fruit tree	Areca catechu	8	8.28±4.9	66.24		-	5,300
	Musa spp.	7	3±3	21		1	1,050
	Mangifera indica	20	0.85 ± 1.8	17		-	1,360
	Syzygium cumini	15	0.14 ± 0.3	2.1		-	126
Sub-total					107.34		7,836
				LF.	FW	Const.	
b) Forest tree	Bambusa tulda		4.28±11.3	-	5	10	150
	Gmelina arborea		0.14 ± 0.3	-	-	-	-
	Ficus religiosa		0.14 ± 0.3	-	-	-	-
	Neolamarckia cadamba		0.71 ± 1.8	-	-	-	-
Sub-total	•				15		150

c) Fish	Cyprinus carpio	Fish (no.)		
	Ctenopharyngodon			
	idella			
	Labeo rohita			
	Catla catla	437.5		
	Probarbus jullieni		262.5	42,000
	Hypophthalmichthys			
	molitrix			
Total				49,986

FW =Fuelwood, HH=Household, LF= Leaf fodder, Const.= Construction.

Gross income from fish, horticultural and silvicultural component	= Rs. 49,986
Operational cost	= Rs. 9,655
Net income (Total Gross income – Total operational costs) = Rs. 40,	331

The average biological yield of horticultural & silvicultural crops and fishes in aquaforestry of small farmers category was 1.22 quintals per household and 2.62 quintals per household, respectively (Table 9).

(Rs.) 0 36,000 36,000	factor@15%	cost (Rs.) 39,800	benefit (Rs.)	Net Cash flow (Rs.)
36,000		39,800	Δ	
	0.07		0	-39,800
36.000	0.87	8,826	31,304	22,478
50,000	0.76	7,675	27,221	19,546
36,000	0.66	6,674	23,671	16,997
36,000	0.57	5,803	20,583	14,780
45,240	0.50	5,171	22,492	17,322
45,240	0.43	4,496	19,559	15,062
48,240	0.38	4,004	18,135	14,131
52,986	0.33	3,563	17,321	13,758
52,986	0.28	3,098	15,062	11,963
40,986	0.25	2,076	10,131	8,055
49,986	0.21	2,075	10,744	8,669
43,606	*	*	*	*
		1,07,548	2,77,461	1,69,913
		·	1,6	9,913
			2.58	3
			68.2	20
				2.58

Table 10. Present worth of costs and benefits of aquaforestry in small farmers category.

* Series of data from 12-39 years

(c) Semi-medium farmers.

Components	Name of the species	Fruits produce tree ⁻¹ (kg)	No of tree HH ⁻¹	Average Yie	eld (kg.)		Goss benefit per HH
		uee (kg)		Emit	-	Zaddan	(Rs.)
		0		Fruit	1	Fodder	2 002
a) Fruit tree	Areca catechu	8	4.66 ± 2.3	37.28		-	2,982
	Musa spp.	7	3 <u>+</u> 3	21		1	1,050
	Cocos nucifera	67	0.33 <u>+</u> 0.57	22.11		-	884
	Carica papaya	15		4.95		-	148
			0.33 <u>+</u> 0.57				
Sub-total	Sub-total		86.34			5,064	
				LF	FW	Const.	
	Gmelina arborea		0.33±0.57	-	-	-	-
b) Forest tree	Albizia lebbeck		0.33±0.57	-	-	-	-
	Lagerstroemia speciosa		1±1.7	-	-	10	100
Call tatal			1 <u>1</u> 1./		10		100
Sub-total					10		100
c) Fish spp.	Cyprinus carpio		Fish (No.)	Fish (Kg)			
	Ctenopharyngodon idella						
	Labeo rohita						
	Catla catla						
	Probarbus jullieni		563	337.5			54,000
	Hypophthalmichthys molitrix						
Total	1	1	1	1			59,164

Table 11. Biological yield of aquaforestry in semi-medium farmers category.

FW =Fuelwood, HH=Household, LF= Leaf fodder, Const.= Construction.

Gross income from fish, horticultural and silvicultural component = Rs. 59,164 Operational cost = Rs. 11,334 Net income (Total Gross income – Total operational costs) = Rs. 47,830

The average biological yield of horticultural & silvicultural crops and fishes in aquaforestry of semi-medium farmers category was 0.96 quintals per household and 3.37quintals per household, respectively (Table 11). The Benefit-Cost ratio was highest in semi-medium farmers i.e., 2.91, followed by small farmers (2.70) and small farmers (2.58) (Table no. 8, 10 and 12). However, Dabral *et al.* (2017) reported B:C ratio of water harvesting ponds between 1.5 to 2.93.

The highest Internal Rate of Return (IRR) was reported from semi-medium farmers i.e., 86.73%, followed by small farmers (68.20%) and marginal farmers (65.31%). Whereas the lowest Payback period (PBP) was found in the small farmer category i.e., 2.21 years, followed by small farmers (2.53 years) and marginal farmers (2.68 years) (Tables no. 8, 10 and 12).

5. Conclusions

From the present study, it can be concluded that aquaforestry is an important traditional agroforestry system of Assam that gives valuable resources to farmers such as fishes, fuelwoods, fodders and fruits. The financial analysis of aquaforestry w.r.t. three farmers categories based on their landholding was studied and found that NPW, Benefit-cost ratio, internal rate of return and payback period of aquaforestry were feasible and profitable. Thus, aquaforestry can be considered as a profitable sustainable land-use system and has the potential to improve the socio-economic condition of agroforestry farmers.

6. Acknowledgements

The authors would like to thank the aquaforestry owners of Lakhimpur district, Assam for their cooperation in completing the research work on traditional aquaforestry system.

Year	Cost (Rs.)	Benefit (Rs.)	Discount factor	Present worth	Present worth	Present worth of
			@ 15%	cost (Rs.)	benefit (Rs.)	Net Cash flow
						(Rs.)
0	33,514	0	1.000	33,514	0	-33,514
1	11,290	39,000	0.870	9,817	33,913	24,096
2	11,290	39,000	0.756	8,537	29,490	20,953
3	11,290	39,000	0.658	7,423	25,643	18,220
4	11,290	39,000	0.572	6,455	22,298	15,843
5	11,540	54,670	0.497	5,737	27,181	21,443
6	11,540	54,670	0.432	4,989	23,635	18,646
7	11,790	57,670	0.376	4,432	21,680	17,248
8	12,040	62,164	0.327	3,936	20,322	16,386
9	12,040	62,164	0.284	3,423	17,671	14,248
10	10,740	50,164	0.247	2,655	12,400	9,745
11	11,334	59,164	0.215	2,436	12,717	10,281
12-39	11,471	50,606	*	*	*	*
Total				1,09,464	3,18017	2,08,396
Net Present W	/orth @15%			1	2,08,553	I
BCR @15%					2.91	
IRR%						
86.73						
Payback Perio	od (Years)					
2.21						

Table 12. Present worth of costs and benefits of aquaforestry in semi-medium farmers category.

* Series of data from 12-39 years

7. References

- Adelakun, K.M., Mustapha, M.K., Ogundiwin, D.I, Ihidero, A.A. (2014). Nutritional and anti-nutrient composition of Karaya gum tree (*Sterculia setigera*) seed: a potential fish feed ingredient. *J Fish*, 2:151.
- Akinwalere, B.O. (2017). Determinants of Adoption of Agroforestry Practices Among Farmers in Southwest Nigeria. *Applied Tropical Agriculture*, 22(2): 67-72.
- Anonymous (2019). Agricultural Census 2015-2016 (Phase-I). All India Report on Number and Area of Operational Holdings, Agriculture Census Division, Department of Agriculture, Co-operation & Farmers Welfare, Ministry of Agriculture & Farmer Welfare, Government of India. http://agcensus.nic.in/document/ agcen1516/T1ac 2015 16.pdf.
- Ariwaoda, J.O., Nwlisuator, D. and Adeniji, K.A. (2007). *Melaleuca leucadendron* (L): Potentials for Plantation Forestry in The Coastal Mangrove Area of Nigeria and The Prospects of Its Successful Integration into Agroforestry Practices Like Aquaforestry And Apisiviculture. *Journal of Agriculture, Forestry, and the Social Sciences*, 5(1). DOI: 10.4314/joafss.v5i1.45966
- Buyukcapar, H.M., Gunlemez, F and Kamalak, A. (2012). Effect of partially replacing fish meal with honey locust seed (*Gleditsia triacanthos*) on growth, feed utilisation and body composition of mirror carp, *Cyprinus carpio*, fingerlings. *Journal of Applied Animal Research*, 40(1): 8-12.
- Dabral, P.P. and Baithuri, N. (2007). An economic evaluation of water harvesting pond under the humid condition of Arunachal Pradesh. J. Soil Water Conserv, 6(1), 24–28.

- Nair, P.K.R. (1991). State-of-the-art of agroforestry systems. In: Jarvis, P.G. (ed.), Agroforestry: Principles and Practices, pp. 5-29. Elsvier, Amsterdam, The Netherlands.Ozden, O. and Tolunay, A. (2020). Aquaforestry applications in water resources in forest areas in Turkey. *Turkish Journal of Forest Science*, 4(1): 99-112.
- Pangging, G., and Singh, S.L. (2015). Traditional Agroforestry system in Eastern Himalaya: A case study of fringe villages of Doimukh Forest Range, Arunachal Pradesh, India. *International Journal of Current Science in Bioscience and Plant Biology*, 2(10):23-28.
- Rath, S.C., Pradhan, C., Rangacharyulu, P.V. (2014). Nutritional evaluation of rain tree (*Samanea saman*) pod and its incorporation in the diet of rohu (*Labeo rohita* Hamilton) larvae as a non-conventional feed ingredient Regional .consultation on Policy Framing on Fish Biodiversity Management in Transboundary. *Artic Indian J. Fish*, 12:740.
- Tanjang, S., Shukla, A.K., Arunachalam, K. & Arunachalam, A. (2009). Mineralization dynamics of Nitrogen and Phosphorus in *Areca catechu* L. based traditional agroforestry system. *Communications in soil science and plant analysis*, 40 (21-22): 3225-3237.
- Yuangsoi, B. and Masumoto, T. (2012). Replacing moringa leaf (*Moringa oleifera*) partially by protein replacement in soybean meal of fancy carp (*Cyprinus carpio*). Songklanakarin Journal of Science & Technology, 34(5).